Towards Semi-supervised Universal Graph Classification

نویسندگان

چکیده

Graph neural networks have pushed state-of-the-arts in graph classifications recently. Typically, these methods are studied within the context of supervised end-to-end training, which necessities copious task-specific labels. However, real-world circumstances, labeled data could be limited, and there a massive corpus unlabeled data, even from unknown classes as complementary. Towards this end, we study problem semi-supervised universal classification, not only identifies samples do belong to known classes, but also classifies remaining into their respective classes. This is challenging due severe lack labels potential class shifts. In paper, propose novel network framework named UGNN, makes best subgraph perspective. To tackle shifts, estimate certainty graphs using multiple subgraphs, facilities discovery categories. Moreover, construct semantic prototypes embedding space for both categories utilize posterior prototype assignments inferred Sinkhorn-Knopp algorithm learn abundant across different views. Extensive experiments on six datasets verify effectiveness UGNN settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Classification Based on Mixture Graph

Graph-based semi-supervised classification heavily depends on a well-structured graph. In this paper, we investigate a mixture graph and propose a method called semi-supervised classification based on mixture graph (SSCMG). SSCMG first constructs multiple k nearest neighborhood (kNN) graphs in different random subspaces of the samples. Then, it combines these graphs into a mixture graph and inc...

متن کامل

Semi-Supervised Classification with Graph Convolutional Networks

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...

متن کامل

Graph-based multimodal semi-supervised image classification

We investigate an image classification task where training images come along with tags, but only a subset being labeled, and the goal is to predict the class label of test images without tags. This task is important for image search engine on photo sharing websites. In previous studies, it is handled by first training a multiple kernel learning classifier using both image content and tags to sc...

متن کامل

Accurate Semi-supervised Classification for Graph Data

Most machine learning algorithms require labeled instances as training data; however, not all instances are equally easy to obtain labels for. For example, the best-known papers and/or websites would be easier for a domain expert to label. We propose a new PageRank-style method for performing semi-supervised learning by propagating labels from labeled seed instances to unlabeled instances in a ...

متن کامل

Dissimilarity in Graph-Based Semi-Supervised Classification

Label dissimilarity specifies that a pair of examples probably have different class labels. We present a semi-supervised classification algorithm that learns from dissimilarity and similarity information on labeled and unlabeled data. Our approach uses a novel graphbased encoding of dissimilarity that results in a convex problem, and can handle both binary and multiclass classification. Experim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering

سال: 2023

ISSN: ['1558-2191', '1041-4347', '2326-3865']

DOI: https://doi.org/10.1109/tkde.2023.3280859